BACOGENIN A2: A NEW SAPOGENIN FROM BACOSIDES*

D. K. Kulshreshtha and R. P. Rastogi

Central Drug Research Institute, Lucknow, India

(Received 6 July 1973)

Key Word Index-Bacopa monniera; Scrophulariaceae; Bacogenin A2, triterpenoid.

Abstract—By means of physicochemical studies bacogenin A₂ has been shown to be an isomer of bacogenin A₁ differing either in the configuration at C-20 or in the disposition of the vinylic methyl group in the side chain.

The saponins, bacosides A and B, from $Bacopa\ monniera$ Wettst. furnished a mixture of four aglycones namely bacogenins A_1-A_4 on acid hydrolysis.¹ In the preceding papers the structure of bacogenin A_1^2 and the identification of bacogenin A_4 as ebelin lactone along with the tentative proposals on the nature of the genuine sapogenin have been described.³ The structure of bacogenin A_2 is reported in the present communication.

Bacogenin A_2 , $C_{30}H_{48}O_4$, (M⁺472) m.p. 220°, contains an OH (3350 cm⁻¹), a 5-membered ring CO (1750 cm⁻¹) and a -C=C-H group (1665, 820 cm⁻¹). Its PMR spectrum exhibited signals for seven tertiary Me, $-CH_2COCH_-$, $-CHO_-$, $-CH_2O_-$ and Me-C=CH groups. The relative disposition of the vinylic Me and vinylic H as -CH=C-Me was similar to that of bacogenin A_1 and was confirmed by spin decoupling. Further, its PMR spectrum in pyridine d_5 showed, besides other signals, a 2H AB quartet (J 16 Hz) centred at 2·45 ppm and a 1H broad singlet at 2·47 ppm assignable to the methylene and methine protons respectively flanking the C=O group, thereby confirming the existence of a $-CH-CO-CH_2$ -grouping in the 5-membered ring.

After addition of trichloroacetylisocyanate (TAI), the PMR spectrum of bacogenin A_2 exhibited two 1H broad singlets of $-\text{CO-N}\underline{\text{H}}\text{CO-}$ protons (8·46 and 8·51 ppm) demonstrating the presence of only two OH groups in the molecule. This was further confirmed by formation of bacogenin A_2 diacetate, $C_{34}H_{52}O_6$, m.p. 202–3°, which showed two acetyl singlets at 2·0 and 2·06 ppm in PMR spectrum. Moreover, the signals due to $-\underline{\text{C}}\underline{\text{H}}\text{O-}$ and $\underline{\text{CH}}_2$ -O- now shifted downfield by ca 1 and 0·5 ppm respectively suggesting that one of the OH groups was secondary and the other one primary.

The MS of bacogenin A_2 displayed prominent peaks at m/e 472 (M⁺), 457 (M-15), 439 (M-15-18), 207 (ion a) and 189 (207-18). A very intense peak was observed at m/e 125 (base peak) due to the side chain $(b)^2$, which on further loss of H_2O and CH_3 gave rise to m/e 107 and 110 respectively. The MS of di-O-acetylbacogenin A_2 also contained an intense peak at m/e 125 suggesting that the side chain of bacogenin A_2 did not carry any OH group.

^{*} Part VI in the series "Chemical Examination of Bacopa monniera". CDRI communication No. 1865.

¹ CHATTERJI, N., RASTOGI, R. P. and DHAR, M. L. (1965) Indian J. Chem. 3, 24.

² KULSHRESHTHA, D. K. and RASTOGI, R. P. (1973) Phytochemistry 12, 887.

³ Kulshreshtha, D. K. and Rastogi, R. P. (1973) Phytochemistry 12, 2074.

In view of the common molecular formula and functionalities of bacogenin A_1 and A_2 and their similar physicochemical data, bacogenin A_2 was considered to possess a gross structure similar to that of bacogenin A_1 but differing either in the configuration at C-17, C-20 or in the disposition of the vinylic Me group of the side chain.

In case of the 17 α -configuration, the side chain would be susceptible to base catalysed epimerization because of the activation by the C-16 carbonyl group. Bacogenin A_2 was, however, recovered unchanged on alkali treatment indicating that the side chain possessed 17 β -configuration. Bacogenin A_2 has, therefore, been assigned structure 1.

EXPERIMENTAL

All m.ps were determined on Kofler block and are uncorrected.

Bacogenin A_2 : m.p. 220°, $[\alpha]_D = -44^\circ$ (c 1%, EtOH), $v_{max}(\text{KBr})$: 3350, 2925, 2850, 1750, 1465, 1375, 1200, 1040, 970, 844, 824, 785, 752; PMR: ppm 0·80, 0·90, 0·983, 1·25, 1·31 (3H each, s, $5 \times \text{Me}$), 1·15 (6H, s, $2 \times \text{Me}$), 1·73 (3H, d, J 1·5 Hz, -C=C-Me), 2·2 (3H, b, s, $-\text{CH-CO-CH}_2$ -), 3·23 (1H, q, J 10, 5 Hz -CH-O-), 3·966 (2H, ABq, J 11 Hz, $-\text{CH}_2$ -O), 5·30 (1H, q, J 1·5 Hz, -C = C-H); PMR (in pyridine d_5): ppm 0·80, 0·89, 1·15, 1·20, 1·30 (3H each, s, $5 \times \text{Me}$), 1·044 (6H, s, $2 \times \text{Me}$), 1·69 (3H, d, J 1·5 Hz, -C=C-Me), 2·45 (1H, s, -CH-CO), 2·47 (2H, ABq, J 16, CH $_2$ -CO-), 3·29 (1H, m, -CH-O), 4·14 (2H, ABq, J 12 Hz, $-\text{CH}_2$ -O), 5·20 (1H, q, J 1·5 Hz, -C=C-H). MS. m/e 472 (M 1), 457, 439, 207, 189, 180, 125 (base peak), 110, 107 (Found: C, 75·98; H, 10·35, C $_{30}$ H $_{48}$ O $_{4}$ requires: C, 76·27; H, 10·16%).

Di-O-acetylbacogenin A_2 . Bacogenin A_2 (500 mg) in pyridine (5 ml) and Ac_2O (5 ml) was allowed to react overnight. The product was crystallised from alcohol, m.p. $202-203^\circ$; [α]_D -43° (c 1% CHCl₃); PMR; ppm 0·89 (6H, s, 2 × Me), 0·95, 1·09, 1·19, 1·25, 1·33 (3H each, s, 5 × Me), 1·75 (3H, d, J 1·5 Hz, -C=C-Me), 2·0. 2·06 (3H each, s, OCOMe), 4·48 (2H, ABq, J 13 Hz, CH₂OAc), 4·55 (1H, m, CHOAc), 5·34 (1H, q, J 1·5 Hz, C=C-H), MS: m/e (not visible), 542, 449, 481, 457, 439, 421, 397, 189, 125, 107 (Found: C, 73·08; H, 9·86, C₃₄H₅₂O₆ requires: C, 73·41; H, 9·606%).

Acknowledgements—The authors thank Mr. E. Samson for technical assistance and Messrs R. K. Mukerji, B. B. P. Srivastava and R. K. Singh for IR, PMR and MSS respectively.